A maize vacuolar invertase, IVR2, is induced by water stress. Organ/tissue specificity and diurnal modulation of expression.

نویسندگان

  • J Y Kim
  • A Mahé
  • J Brangeon
  • J L Prioul
چکیده

The expression of invertases was analyzed in vegetative organs of well-watered and water-stressed maize (Zea mays) plants. Early changes in sucrose metabolism and in acid soluble invertase expression were observed in vegetative sink and source organs under mild water stress. The organ-specific induction of acid invertase activity was correlated with an increase in the Ivr2 gene transcripts and in the vacuolar invertase proteins. In addition diurnal changes in activity and Ivr2 transcripts for vacuolar invertase were noted in shoots. Hexoses (glucose and fructose) accumulated in all organs examined from water-stressed plants. In situ localization studies showed that glucose accumulation, vacuolar invertase activity, invertase protein, and the Ivr2 transcripts colocalized specifically in bundle sheath and vascular tissue cells of mature stressed leaf; in primary roots the stress-induced increase of Ivr2 transcripts was detected only in root tips. Based on these results different regulatory roles are proposed in sink and source organs for the stress induced Ivr2 vacuolar invertase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of abscisic acid in the response of a specific vacuolar invertase to water stress in the adult maize leaf.

Among the numerous molecular and physiological modifications induced by water deficit, one of the earliest events observed in maize mature leaves subjected to water deprivation was a strong enhancement of acid vacuolar invertase activity, which occurred before the classical reduction in gas exchange due to stomatal closure. The increase in invertase activity coincided with the rapid accumulatio...

متن کامل

Soluble invertase expression is an early target of drought stress during the critical, abortion-sensitive phase of young ovary development in maize.

To distinguish their roles in early kernel development and stress, expression of soluble (Ivr2) and insoluble (Incw2) acid invertases was analyzed in young ovaries of maize (Zea mays) from 6 d before (-6 d) to 7 d after pollination (+7 d) and in response to perturbation by drought stress treatments. The Ivr2 soluble invertase mRNA was more abundant than the Incw2 mRNA throughout pre- and early ...

متن کامل

A Similar Dichotomy of Sugar Modulation and Developmental Expression Affects Both Paths of Sucrose Metabolism: Evidence from a Maize Invertase Gene Family.

Invertase and sucrose synthase catalyze the two known paths for the first step in carbon use by sucrose-importing plant cells. The hypothesis that sugar-modulated expression of these genes could provide a means of import adjustment was initially suggested based on data from sucrose synthases alone; however, this hypothesis remained largely conjectural without critical evidence for invertases. T...

متن کامل

Rapid repression of maize invertases by low oxygen. Invertase/sucrose synthase balance, sugar signaling potential, and seedling survival.

We show here that invertase gene expression and the invertase-sucrose (Suc) synthase ratio decrease abruptly in response to low oxygen in maize root tips. In addition to aiding in the conservation of carbon and possibly ATP, this response has the potential to directly affect sugar signaling relative to carbon flux. Experiments were motivated by the potential for a reduced invertase/Suc synthase...

متن کامل

Cloning and Expression Analysis of ZmERD3 Gene From Zea mays

Background: Stresses (such as drought, salt, viruses, and others) seriously affect plant productivity. To cope with these threats, plants express a large number of genes, including several members of ERD (early responsive to dehydration) genes to synthesize and assemble adaptive molecules. But, the function of ERD3 gene hasn’t been known so far.Objectives:</strong...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 124 1  شماره 

صفحات  -

تاریخ انتشار 2000